首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   741篇
  免费   60篇
  2023年   5篇
  2021年   8篇
  2020年   6篇
  2019年   8篇
  2018年   13篇
  2017年   13篇
  2016年   12篇
  2015年   34篇
  2014年   42篇
  2013年   35篇
  2012年   57篇
  2011年   45篇
  2010年   29篇
  2009年   19篇
  2008年   31篇
  2007年   26篇
  2006年   34篇
  2005年   36篇
  2004年   31篇
  2003年   37篇
  2002年   27篇
  2001年   16篇
  2000年   13篇
  1999年   9篇
  1998年   10篇
  1997年   9篇
  1996年   8篇
  1995年   12篇
  1994年   10篇
  1993年   16篇
  1992年   17篇
  1991年   10篇
  1990年   6篇
  1989年   8篇
  1988年   11篇
  1987年   9篇
  1986年   7篇
  1985年   8篇
  1984年   6篇
  1983年   8篇
  1982年   3篇
  1981年   6篇
  1980年   6篇
  1979年   9篇
  1978年   3篇
  1977年   7篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   3篇
排序方式: 共有801条查询结果,搜索用时 15 毫秒
71.
The effects of evolutionary processes in fungal pathogen populations may occur more rapidly and display larger effects in agricultural systems than in wild ecosystems because of human involvement by plant breeding and crop management. In this study, we analysed the rate of evolution in three lineages of a northwest European population of a biotrophic and asexual reproduced fungal pathogen, Puccinia striiformis f. sp. tritici, causing yellow rust on wheat. Pathogen samples were collected between 1975 and 2002 in the UK and Denmark, and assayed for 14 individual avirulence/virulence alleles and up to 234 amplified fragment length polymorphism (AFLP) primer pairs producing approximately 17,000 AFLP fragments. The large number of fragments and a targeted sampling of isolates allowed a reconstruction of phylogenies in great detail, i.e. no homoplasy and a representation of sequential, evolutionary steps by pathogen samples. A recent, phenotypic loss of avirulence was observed at least once for loci corresponding to P. striiformis f. sp. tritici resistance Yr2, Yr3, Yr4, Yr7, Yr9, and Yr15, whereas Avr6 and Avr17 were lost independently in all three lineages, corresponding to 16 events of loss of avirulence (emergence of virulence). The opposite process, restoration of avirulence, was observed for Yr9 and Yr32. An interpretation of phenotypic changes within lineages as independent mutation events resulted in mutation frequencies from 1.4x10(-6) to 4.1x10(-6) per AFLP fragment (locus) per generation, whereas the effective rate by which a mutation from avirulence to virulence was established in the pathogen population, when subject to selection by host resistance genes, was approximately three orders of magnitude faster.  相似文献   
72.
The origin of modern wheats involved alloploidization among related genomes. To determine if Aegilops speltoides was the donor of the B and G genomes in AABB and AAGG tetraploids, we used a 3-tiered approach. Using 70 amplified fragment length polymorphism (AFLP) loci, we sampled molecular diversity among 480 wheat lines from their natural habitats encompassing all S genome Aegilops, the putative progenitors of wheat B and G genomes. Fifty-nine Aegilops representatives for S genome diversity were compared at 375 AFLP loci with diploid, tetraploid, and 11 nulli-tetrasomic Triticum aestivum wheat lines. B genome-specific markers allowed pinning the origin of the B genome to S chromosomes of A. speltoides, while excluding other lineages. The outbreeding nature of A. speltoides influences its molecular diversity and bears upon inferences of B and G genome origins. Haplotypes at nuclear and chloroplast loci ACC1, G6PDH, GPT, PGK1, Q, VRN1, and ndhF for approximately 70 Aegilops and Triticum lines (0.73 Mb sequenced) reveal both B and G genomes of polyploid wheats as unique samples of A. speltoides haplotype diversity. These have been sequestered by the AABB Triticum dicoccoides and AAGG Triticum araraticum lineages during their independent origins.  相似文献   
73.
The fungal pathogen Pst causes yellow rust disease in wheat plants leading to crop losses. The organism spreads by releasing wind-dispersed urediniospores from infected plants. In this study a library of novel monoclonal antibodies (mAbs) was developed against Pst urediniospores. Nine mAb-producing cell lines were cloned and their cross-reactivities characterised against a panel of airborne fungal spores representing genera commonly found in the same environment as Pst. Two specific mAbs were used to develop a competitive ELISA (Pst mAb4) and a subtractive inhibition ELISA (Pst mAb8). Standard curves for both assays had good intra- and interday reproducibility. The subtractive inhibition ELISA had greater sensitivity with a detection limit of 1.5 × 105 spores ml−1. Cross-reactivity studies of Pst mAb8 in the subtractive inhibition ELISA, showed reaction with other Puccinia spores only, suggesting that common epitopes exist within this genus. The biosensor-compatible Pst mAb8 assay principle developed in this study has the potential to be implemented in future ‘label-free’ in-the-field systems for Pst detection.  相似文献   
74.
We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We identified a number of new protein network modules and novel candidate genes/proteins for type 1 diabetes. We propose this type of integrative analysis as a general method for the elucidation of genes and networks involved in diabetes and other complex diseases.  相似文献   
75.
76.
Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals.  相似文献   
77.

Background

The sensitivity of genome-wide association studies for the detection of quantitative trait loci (QTL) depends on the density of markers examined and the statistical models used. This study compares the performance of three marker densities to refine six previously detected QTL regions for mastitis traits: 54 k markers of a medium-density SNP (single nucleotide polymorphism) chip (MD), imputed 777 k markers of a high-density SNP chip (HD), and imputed whole-genome sequencing data (SEQ). Each dataset contained data for 4496 Danish Holstein cattle. Comparisons were performed using a linear mixed model (LM) and a Bayesian variable selection model (BVS).

Results

After quality control, 587, 7825, and 78 856 SNPs in the six targeted regions remained for MD, HD, and SEQ data, respectively. In general, the association patterns between SNPs and traits were similar for the three marker densities when tested using the same statistical model. With the LM model, 120 (MD), 967 (HD), and 7209 (SEQ) SNPs were significantly associated with mastitis, whereas with the BVS model, 43 (MD), 131 (HD), and 1052 (SEQ) significant SNPs (Bayes factor > 3.2) were observed. A total of 26 (MD), 75 (HD), and 465 (SEQ) significant SNPs were identified by both models. In addition, one, 16, and 33 QTL peaks for MD, HD, and SEQ data were detected according to the QTL intensity profile of SNP bins by post-analysis of the BVS model.

Conclusions

The power to detect significant associations increased with increasing marker density. The BVS model resulted in clearer boundaries between linked QTL than the LM model. Using SEQ data, the six targeted regions were refined to 33 candidate QTL regions for udder health. The comparison between these candidate QTL regions and known genes suggested that NPFFR2, SLC4A4, DCK, LIFR, and EDN3 may be considered as candidate genes for mastitis susceptibility.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0129-1) contains supplementary material, which is available to authorized users.  相似文献   
78.
Macrophages are the primary habitat of pathogenic mycobacteria during infections. Current research about the host–pathogen interaction on the cellular level is still going on. The present study proves the potential of Raman microspectroscopy as a label‐free and non‐invasive method to investigate intracellular mycobacteria in situ. Therefore, macrophages were infected with Mycobacterium gordonae, a mycobacterium known to cause inflammation linked to intracellular survival in macrophages. Here, we show that Raman maps provided spatial and spectral information about the position of bacteria within determined cell margins of macrophages in two‐dimensional scans and in three‐dimensional image stacks. Simultaneously, the relative intracellular concentration and distributions of cellular constituents such as DNA, proteins and lipids provided phenotypic information about the infected macrophages. Locations of bacteria outside or close to the outer membrane of the macrophages were notably different in their spectral pattern compared with intracellular once. Furthermore, accumulations of bacteria inside of macrophages exhibit distinct spectral/molecular information because of the chemical composition of the intracellular microenvironment. The data show that the connection of microscopically and chemically gained information provided by Raman microspectroscopy offers a new analytical way to detect and to characterize the mycobacterial infection of macrophages.  相似文献   
79.

Background

Barley, globally the fourth most important cereal, provides food and beverages for humans and feed for animal husbandry. Maximizing grain yield under varying climate conditions largely depends on the optimal timing of flowering. Therefore, regulation of flowering time is of extraordinary importance to meet future food and feed demands. We developed the first barley nested association mapping (NAM) population, HEB-25, by crossing 25 wild barleys with one elite barley cultivar, and used it to dissect the genetic architecture of flowering time.

Results

Upon cultivation of 1,420 lines in multi-field trials and applying a genome-wide association study, eight major quantitative trait loci (QTL) were identified as main determinants to control flowering time in barley. These QTL accounted for 64% of the cross-validated proportion of explained genotypic variance (pG). The strongest single QTL effect corresponded to the known photoperiod response gene Ppd-H1. After sequencing the causative part of Ppd-H1, we differentiated twelve haplotypes in HEB-25, whereof the strongest exotic haplotype accelerated flowering time by 11 days compared to the elite barley haplotype. Applying a whole genome prediction model including main effects and epistatic interactions allowed predicting flowering time with an unmatched accuracy of 77% of cross-validated pG.

Conclusions

The elaborated causal models represent a fundamental step to explain flowering time in barley. In addition, our study confirms that the exotic biodiversity present in HEB-25 is a valuable toolbox to dissect the genetic architecture of important agronomic traits and to replenish the elite barley breeding pool with favorable, trait-improving exotic alleles.
  相似文献   
80.
A set of 90 doubled haploid (DH) lines derived from F(1) plants that originated from a cross between × Triticosecale Wittm. 'Saka3006' and ×Triticosecale Wittm. 'Modus', via wide crossing with maize, were used to create a genetic linkage map of triticale. The map has 21 linkage groups assigned to the A, B, and R genomes including 155 simple sequence repeat (SSR), 1385 diversity array technology (DArT), and 28 amplified fragment length polymorphism (AFLP) markers covering 2397 cM with a mean distance between two markers of 4.1 cM. Comparative analysis with wheat consensus maps revealed that triticale chromosomes of the A and B genomes were represented by 15 chromosomes, including combinations of 2AS.2AL#, 2AL#2BL, 6AS.6AL#, and 2BS.6AL# instead of 2A, 2B, and 6A. In respect to published maps of rye, substantial rearrangements were found also for chromosomes 1R, 2R, and 3R of the rye genome. Chromosomes 1R and 2R were truncated and the latter was linked with 3R. A nonhomogeneous distribution of markers across the triticale genome was observed with evident bias (48%) towards the rye genome. This genetic map may serve as a reference linkage map of triticale for efficient studies of structural rearrangements, gene mapping, and marker-assisted selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号